skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Danyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lung cancer is a serious global health issue that requires the development of patient-specific, lung cancer model for surgical planning to train interventionalists and improve the accuracy of biopsies. Although the emergence of three-dimensional (3D) printing provides a promising solution to create customized models with complicated architectures, current 3D printing methods cannot accurately duplicate anatomical-level lung constructs with tumor(s) which are applicable for hands-on training and procedure planning. To address this issue, an embedded printing strategy is proposed to create respiratory bronchioles, blood vessels, and tumors in a photocurable yield-stress matrix bath. After crosslinking, a patient-specific lung cancer analogous model is produced, which has tunable transparency and mechanical properties to mimic lung parenchyma. This engineered model not only enables the practical training of fine-needle aspiration biopsy but also provides the necessary information, such as coordinates of aspiration, wound depth, and interference with surrounding tissues, for procedure optimization. 
    more » « less
    Free, publicly-accessible full text available December 30, 2025
  2. Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future. 
    more » « less
  3. Abstract Nanocomposites made from alginate and nanoclay are extensively applied for diverse biomedical applications. However, the lack of a clear understanding of the interactions between alginate and nanoclay makes it difficult to rationally design the nanocomposites for different material extrusion‐based 3D bioprinting strategies. Here, a combined analytical model is proposed to accurately predict the interaction mechanisms between alginate and nanoclay through small‐angle neutron scattering. These mechanisms are summarized into a phase diagram that can guide the design of alginate‐nanoclay nanocomposites for different bioprinting applications. The rheological properties of various nanocomposites are measured to validate the proposed interaction mechanisms at the macroscale. Accordingly, three representative extrusion‐based bioprinting strategies are linked with the nanocomposite design and applied to freeform fabricate complex structures. A roadmap is summarized to bridge the gap between biomaterial design and bioprinting processes, enabling the rapid and rational selection of biomaterial formula based on available 3D printing methods, and vice versa. 
    more » « less
  4. Abstract Embedded ink writing (EIW) is an emerging 3D printing technique that fabricates complex 3D structures from various biomaterial inks but is limited to a printing speed of ∼10 mm s−1due to suboptimal rheological properties of particulate‐dominated yield‐stress fluids when used as liquid baths. In this work, a particle‐hydrogel interactive system to design advanced baths with enhanced yield stress and extended thixotropic response time for realizing high‐speed EIW is developed. In this system, the interactions between particle additive and three representative polymeric hydrogels enable the resulting nanocomposites to demonstrate different rheological behaviors. Accordingly, the interaction models for the nanocomposites are established, which are subsequently validated by macroscale rheological measurements and advanced microstructure characterization techniques. Filament formation mechanisms in the particle‐hydrogel interactive baths are comprehensively investigated at high printing speeds. To demonstrate the effectiveness of the proposed high‐speed EIW method, an anatomic‐size human kidney construct is successfully printed at 110 mm s−1, which only takes ∼4 h. This work breaks the printing speed barrier in current EIW and propels the maximum printing speed by at least 10 times, providing an efficient and promising solution for organ reconstruction in the future. 
    more » « less
  5. Abstract Surgery is the most frequent treatment for patients with brain tumors. The construction of full‐scale human brain models, which is still challenging to realize via current manufacturing techniques, can effectively train surgeons before brain tumor surgeries. This paper aims to develop a set of three‐dimensional (3D) printing approaches to fabricate customized full‐scale human brain models for surgery training as well as specialized brain patches for wound healing after surgery. First, a brain patch designed to fit a wound's shape and size can be easily printed in and collected from a stimuli‐responsive yield‐stress support bath. Then, an inverse 3D printing strategy, called “peeling‐boiled‐eggs,” is proposed to fabricate full‐scale human brain models. In this strategy, the contour layer of a brain model is printed using a sacrificial ink to envelop the target brain core within a photocurable yield‐stress support bath. After crosslinking the contour layer, the as‐printed model can be harvested from the bath to photo crosslink the brain core, which can be eventually released by liquefying the contour layer. Both the brain patch and full‐scale human brain model are successfully printed to mimic the scenario of wound healing after removing a brain tumor, validating the effectiveness of the proposed 3D printing approaches. 
    more » « less